Diagonal de um poliedro é um segmento de reta que liga dois de seus vértices não pertencentes a uma mesma face. O cálculo do comprimento dessa diagonal é feito pelo Teorema de Pitágoras. Caso isso seja feito algebricamente, o resultado é uma fórmula capaz de realizar esse cálculo. Os blocos retangulares são prismas retos cujas bases são retângulos. Esse tipo de prisma apresenta a seguinte propriedade todas as faces laterais de um prisma reto são retângulos. Diagonal do bloco retangular Para encontrar a medida da diagonal do bloco retangular, utilize a seguinte fórmula É importante conhecer a estratégia usada para encontrar essa fórmula, pois ela também pode ser usada para encontrar a diagonal do bloco retangular. Essa estratégia está detalhada a seguir Encontrando a fórmula pelo teorema de Pitágoras Considere que a imagem a seguir é um bloco retangular, a é seu comprimento; b, sua largura; h, sua altura; e CF, uma de suas diagonais Observe que ACF forma um triângulo retângulo. Além disso, perceba que d a medida da diagonal do bloco retangular é também hipotenusa desse triângulo, logo, pode ser obtido pelo teorema de Pitágoras. Entretanto, é necessário conhecer a medida do segmento AF. Para encontrar essa medida, perceba que ABF também é um triângulo retângulo, e a hipotenusa é justamente o segmento AF. Podemos calculá-lo também pelo teorema de Pitágoras, uma vez que conhecemos as medidas a e b de seus catetos. Pelo teorema de PitágorasNão pare agora... Tem mais depois da publicidade ; A partir do comprimento de AF, podemos descobrir o comprimento de d, que é a diagonal do bloco retangular. Para isso, observe novamente o triângulo retângulo ACF Coloque a medida do segmento AF como feito na imagem acima e use o teorema de Pitágoras para descobrir a medida do segmento d Feito isso, utilize as propriedades dos radicais para encontrar Dessa maneira, caso seja necessário, utilize o teorema de Pitágoras para descobrir a medida AF do triângulo retângulo; depois, use o mesmo teorema para descobrir a medida da diagonal do bloco retangular. Exemplo Um bloco retangular possui 15 cm de comprimento, 3 cm de largura e 20 cm de altura. Calcule a medida da diagonal desse poliedro e, depois, use o teorema de Pitágoras para confirmar seu resultado. Solução Com a fórmula, encontraremos a diagonal desse bloco retangular da seguinte maneira A diagonal mede, aproximadamente, 25,18 cm. Pelo teorema de Pitágoras, temos Vamos calcular a medida de AF com o teorema de Pitágoras A partir do comprimento do segmento AF, podemos calcular a diagonal do bloco retangular A diagonal mede, aproximadamente, 25,18 cm. Por Luiz Paulo Moreira Graduado em Matemática
PanjangAG merupakan diagonal ruang balok, sehingga panjang BG dapat dicari dengan menggunakan teorema Pythagoras yakni: AG 2 = AB 2 + BG 2 (5√5) 2 = 10 2 + BG 2. 125 = 100 + BG 2. BG 2 = 125 - 100. BG 2 = 25. BG = √25. BG = 5 cm . Luas ABGH merupakan persegi panjang yang luasnya dapat dicari dengan menggunakan rumus: L = p x l. L = AB x BG. L = 10 cm x 5 cm. L = 50 cm 2Rumus Mencari Diagonal RuangHello, Kaum Berotak! Kali ini kita akan membahas tentang rumus mencari diagonal ruang. Apakah kalian pernah mendengar tentang rumus ini? Jika belum, jangan khawatir karena kita akan membahasnya dengan santai dan mudah Itu Diagonal Ruang?Sebelum membahas rumusnya, mari kita pahami terlebih dahulu apa yang dimaksud dengan diagonal ruang. Diagonal ruang adalah garis yang menghubungkan dua titik yang berlawanan pada sebuah kubus, balok, atau bangun ruang lainnya. Diagonal ruang ini berbeda dengan diagonal bidang yang hanya menghubungkan dua titik di dalam bidang yang Mencari Diagonal Ruang Pada KubusJika kita ingin mencari panjang diagonal ruang pada kubus, kita dapat menggunakan rumus berikutd = s x √3Di manad = panjang diagonal ruangs = panjang sisi kubusUntuk mengaplikasikan rumus ini, kita hanya perlu mengalikan panjang sisi kubus dengan akar tiga. Sebagai contoh, jika sisi kubus adalah 5 cm, makad = 5 x √3 = 8,66 cmRumus Mencari Diagonal Ruang Pada BalokBerbeda dengan kubus, pada balok terdapat dua jenis diagonal ruang. Diagonal ruang pertama menghubungkan dua titik di atas dan di bawah balok, sedangkan diagonal ruang kedua menghubungkan dua titik pada sisi balok. Untuk mencari panjang diagonal ruang pada balok, kita dapat menggunakan rumus berikutd = √p² + l² + t²Di manad = panjang diagonal ruangp = panjang balokl = lebar balokt = tinggi balokUntuk mengaplikasikan rumus ini, kita hanya perlu menghitung kuadrat dari panjang, lebar, dan tinggi balok, menjumlahkannya, dan mengakarkan hasilnya. Sebagai contoh, jika panjang balok adalah 8 cm, lebar balok adalah 5 cm, dan tinggi balok adalah 6 cm, makad = √8² + 5² + 6² = 10,77 cmRumus Mencari Diagonal Ruang Pada Bangun Ruang LainnyaSelain kubus dan balok, terdapat banyak bangun ruang lainnya yang memiliki diagonal ruang. Namun, rumusnya mungkin berbeda-beda tergantung pada bentuk bangun ruang tersebut. Oleh karena itu, jika kita ingin mencari panjang diagonal ruang pada bangun ruang lainnya, kita perlu mencari rumusnya terlebih dahulu. Kemudian, kita dapat mengaplikasikan rumus tersebut dengan cara yang sama seperti pada kubus dan pembahasan di atas, dapat disimpulkan bahwa diagonal ruang adalah garis yang menghubungkan dua titik yang berlawanan pada sebuah kubus, balok, atau bangun ruang lainnya. Untuk mencari panjang diagonal ruang, kita perlu menggunakan rumus yang sesuai dengan jenis bangun ruang yang kita miliki. Dengan mengetahui rumus ini, kita dapat dengan mudah mencari panjang diagonal ruang tanpa perlu mengukur secara Jumpa Kembali di Artikel Menarik Lainnya! RumusLuas Permukaan Balok. Karena merupakan bangun ruang, balok dapat dihitung isi dan permukaannya. Untuk menghitung isi balok, kamu bisa menggunakan rumus volume balok dan menghitung permukaan menggunakan rumus luas balok. Pertama, kamu akan berkenalan dengan rumus luas permukaan balok yang disusun sebagai berikut: Sobat Zenius, coba bayangin elo lagi berdiri di dalam suatu ruangan. Kalo elo berdiri di pojok ruangan, lalu jalan ke pojok sebelahnya, apa yang baru elo telusuri? Yap, lebar ruangan. Sekarang kalo elo berjalan dari pojok ruangan ke pojok seberangnya, apa yang baru elo telusuri? Yap, panjang ruangan. Kalo elo manjat dari pojok ruangan ke pojok atasnya? Namanya tinggi ruangan. Sekarang kalo elo berjalan dari pojok ruangan ke pojok seberang yang berlawanan, apa yang baru elo telusuri? Itulah yang namanya diagonal bidang dan diagonal ruang pada ruangan. Nah, kali ini gue akan bahas tentang diagonal bidang dan diagonal ruang pada bangun ruang. Gue akan bahas apa itu diagonal bidang dan diagonal ruang hingga rumus-rumus yang bisa elo gunakan nantinya. Yuk, elo simak artikel ini sampai akhir, ya! Pengantar Kubus dan BalokDiagonal Bidang dan Diagonal Ruang KubusDiagonal Bidang dan Diagonal Ruang BalokContoh Soal Pengantar Kubus dan Balok Sobat Zenius, kalo bicara soal bangun ruang kira-kira apa yang muncul di benak elo? Biasanya, bangun ruang yang pertama muncul adalah kubus atau balok karena keduanya adalah bangun ruang yang sering banget kita lihat sehari-hari. Nah, meskipun elo udah tau apa itu kubus dan balok, gue mau refresh sedikit nih tentang kedua bangun ruang tersebut. Kubus dan Balok Arsip Zenius Kubus adalah ruang yang berbatas enam bidang persegi. Kubus terdiri atas 6 bidang, 12 rusuk, 8 titik sudut, dan 3 diagonal. Sementara itu, balok adalah ruang yang bidangnya berupa empat persegi panjang. Balok terdiri atas 6 bidang, 12 rusuk, 8 titik sudut, dan 3 diagonal. Loh? Apa bedanya sama kubus? Kata kuncinya, kubus itu terdiri atas persegi sementara balok terdiri atas persegi panjang dan persegi. Panjang, lebar, dan tinggi pada kubus memiliki nilai yang sama, sementara pada balok nilainya nggak sama. Tapi sebagai bangun ruang, kubus dan balok sama-sama punya unsur diagonal. Diagonal tersebut adalah diagonal bidang, diagonal ruang, dan bidang diagonal. Nah, kali ini gue akan bahas dua di antaranya, yaitu diagonal bidang dan diagonal ruang. Baca Juga Kubus – Materi Matematika Kelas 8 Seperti yang gue bahas sebelumnya, kubus itu memiliki diagonal bidang dan diagonal ruang. Tapi sebelum kita bahas satu per satu, emangnya diagonal itu apa sih? Diagonal adalah hubungan antara dua titik sudut yang nggak bersebelahan dalam suatu segi empat–atau dalam bahasan ini adalah kubus. Diagonal Bidang Diagonal bidang adalah hubungan antara dua titik sudut dalam satu bidang yang sama. Jadi, kalo elo pecah suatu kubus menjadi 6 persegi, masing-masing persegi bakal punya diagonal bidang. Nah, meskipun kubus atau persegi memiliki panjang rusuk yang sama, panjang diagonalnya akan berbeda. Oleh karena itu, ada cara tersendiri untuk mengukur panjang diagonal bidang kubus. Coba elo cermati ilustrasi berikut ini. Diagonal Bidang Kubus Arsip Zenius Diagonal Ruang Selain diagonal bidang, ada juga diagonal ruang. Diagonal ruang adalah hubungan antara dua titik sudut pada dalam satu ruang yang sama. Jadi, kedua titik sudutnya ada dalam bidang yang berbeda. Karena diagonal ruang ini ada dalam satu ruang, elo nggak akan bisa memecah kubusnya. Sama halnya seperti diagonal bidang, diagonal ruang juga punya cara tersendiri untuk diukur. Elo bisa cermati ilustrasi berikut ini. Diagonal Ruang Kubus Arsip Zenius Diagonal Bidang dan Diagonal Ruang Balok Nggak hanya kubus, balok juga punya yang namanya diagonal bidang dan diagonal ruang. Konsepnya pun sama, diagonal bidang ada dalam satu bidang, sementara diagonal ruang ada dalam satu ruang. Tapi, cara mengukur diagonal bidang dan diagonal ruang pada balok berbeda karena balok memiliki panjang rusuk yang beragam. Oleh karena itu, elo bisa menggunakan rumus berikut ini untuk mencari diagonal bidang balok. Diagonal Bidang Balok Arsip Zenius Nah, kalo elo udah paham tentang diagonal bidang balok, elo juga bisa menghitung diagonal ruang balok menggunakan rumus berikut ini. Diagonal Ruang Balok Arsip Zenius Contoh Soal Nah Sobat Zenius, setelah elo memahami materi tentang panjang diagonal bidang dan diagonal ruang, gue mau menguji pemahaman elo. Coba elo kerjakan soal-soal berikut ini ya! Contoh Soal 1 Diketahui balok dengan AB = 12 cm, BC = 3 cm, dan CG = 4 cm seperti gambar di bawah ini. Hitunglah panjang diagonal ruang AG. a. 13 cm b. 16 cm c. 20 cm d. 21 cm e. 24 cm Pembahasannya Dari soal, kita tau bahwa balok ini memiliki p = 12 cm, l = 3 cm, dan t = 4 cm. Elo tinggal masukin aja angka-angka ini ke rumusnya. Oleh karena itu, elo dapatkan panjang diagonal ruang AG adalah sebesar 13 cm A. Gimana? Masih gampang, kan? Coba elo kerjain satu contoh soal lagi nih. Contoh Soal 2 Sebuah kubus memiliki panjang sisi sebesar 8 cm. Berapakan panjang diagonal bidang dan diagonal ruang kubus tersebut berturut-turut? a. 8√3 dan 8√2 b. 2√3 dan 2√2 c. 8√2 dan 8√3 d. 2√2 dan 2√3 e. 4√2 dan 4√3 Pembahasannya Nah kalo diagonal sisi dan diagonal ruang kubus gampang nih! Elo tinggal ingat aja rumus-rumusnya. Rumus diagonal bidang kubus adalah s√2, sementara rumus diagonal ruang kubus adalah s√3. Dengan s sebagai panjang sisi, elo bisa langsung dapet nih jawabannya. Diagonal bidang kubus adalah 8√2 cm dan diagonal ruang kubus adalah 8√3 cm. Oleh karena itu, jawaban untuk contoh soal ini adalah 8√2 dan 8√3 C. Sobat Zenius, itu adalah penjelasan gue tentang diagonal bidang dan diagonal ruang pada kubus dan balok. Kalau elo mau tau lebih soal materi ini atau materi matematika lainnya, elo tinggal download aplikasi Zenius di hp elo. Nah, supaya pemahaman elo makin dalam, ikuti terus review materi dan kerjakan berbagai latihan soal di Zenius, yuk. Ada berbagai paket yang bisa elo beli sesuai kebutuhan elo. Klik banner di bawah ini untuk info selengkapnya! Pembahasan gue tentang materi diagonal bidang dan diagonal ruang kelas 8 sampai sini dulu ya! Kalau elo ada pertanyaan, bisa langsung tulis di kolom komentar. Sampai bertemu di artikel selanjutnya. Semangat terus ya, Sobat Zenius! Penulis Trisnajaya Shalsabila DiagonalRuang Balok, adalah diagonal yang terbentuk oleh dua titik sudut balok yang saling berhadapan; Rumus Mencari Lebar Balok Jika Diketahui Luas Permukaannya Untuk mencari rusuk lebar balok yang telah diketahui luas permukaannya adalah: l = (L : 2 - p x t) : p + t: Découvrez comment calculer la diagonale de diverses formes géométriques et déterminez-la facilement avec notre calculateur en ligne. Il est très simple de calculer la longueur de la diagonale d’un rectangle, d’un carré, d’un parallélépipède rectangle ou d’un cube grâce au théorème de Pythagore. Notre calculateur en ligne effectue pour vous les calculs afin de vous donner la réponse instantanément, mais nous vous expliquons également les formules de calcul de la diagonale pour chacune des formes. Comment fonctionne le calculateur de diagonale ? Notre calculateur vous permet de calculer rapidement la diagonale d’un rectangle, d’un carré, d’un parallélépipède rectangle ou d’un cube. Il est très simple d’utilisation. Choisissez d’abord la forme dont vous désirez calculer la diagonale. Introduisez ensuite les données requises en fonction de la forme choisie La hauteur et la longueur pour un rectangle ; La hauteur, la largeur et la longueur pour un parallélépipède rectangle ; Le côté pour un carré ou un cube. Enfin, appuyez sur Calculer » pour obtenir la longueur de la diagonale de la forme demandée. Vous devez effectuer d’autres calculs de géométrie ? Nous mettons à votre disposition une série d’outils pour réaliser des calculs mathématiques. Quelle formule utiliser pour calculer la diagonale ? Comment calculer la diagonale d’un rectangle ? Pour calculer la longueur de la diagonale d’un rectangle, il convient d’utiliser le théorème de Pythagore. En effet, la diagonale divise le rectangle en deux triangles rectangles. Calculer la diagonale d’un rectangle revient donc à calculer l’hypoténuse d’un de ces triangles rectangles. Pour un rectangle de hauteur h, longueur l et diagonale d, l’application du théorème de Pythagore donne le résultat suivant d2 = h2 + l2 d = √ h2 + l2 La formule pour calculer la longueur de la diagonale d’un rectangle est donc d = √ h2 + l2. Comment calculer la diagonale d’un carré ? Un carré est simplement un rectangle particulier. Le carré est en effet défini comme un rectangle aux côtés égaux. Nous pouvons donc appliquer au carré la même formule que celle utilisée pour calculer la longueur de la diagonale d’un rectangle. Pour un carré de côté c et de diagonale d, la simplification de la formule de la diagonale d’un rectangle donne le résultat suivant d = √ c2 + c2 = √ 2 c2 = c √2 La formule pour calculer la longueur de la diagonale d’un carré est donc d = c √2. Comment calculer la diagonale d’un parallélépipède rectangle ? On peut également utiliser le théorème de Pythagore pour calculer la diagonale de figures tridimensionnelles, à commencer par le parallélépipède rectangle. Prenons le cas d’un parallélépipède de hauteur h, largeur l et longueur L. Nous devons d’abord connaître la diagonale d du rectangle de largeur l et longueur L. La formule de la diagonale d’un rectangle déterminée ci-dessus nous permet de trouver d = √ l2 + L2 Chercher la diagonale du parallélépipède revient à calculer la diagonale D du rectangle de hauteur h et de longueur d. On applique à nouveau la même formule en remplaçant d par le résultat que nous venons de trouver D = √ h2 + d2 = √ h2 + l2 + L2 La formule pour calculer la longueur de la diagonale d’un parallélépipède rectangle est donc D = √ h2 + l2 + L2. Comment calculer la diagonale d’un cube ? Un cube est simplement un parallélépipède rectangle particulier. En effet, le cube se définit comme un parallélépipède rectangle aux côtés égaux. Nous pouvons donc appliquer au cube la même formule que celle utilisée pour calculer la longueur de la diagonale d’un parallélépipède rectangle. Pour un cube de côté c et de diagonale D, la simplification de la formule de la diagonale d’un parallélépipède rectangle donne le résultat suivant D = √ c2 + c2 + c2 = √ 3 c2 = c √3 La formule pour calculer la longueur de la diagonale d’un cube est donc D = c √3. BH= √325. BH = 5√13 cm. Selain dengan menggunakan cara di atas, panjang diagonal balok juga dapat dicari dengan menggunakan rumus yakni: d = √ (p2 + l2 + t2) d = √ (82 + 62 + 152) d = √ (64 + 36 + 225) d = √325. d = 5√13 cm. Jadi panjang diagonal ruang balok tersebut adalah 5√13 cm.